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Abstract—Mixed boundary conditions of the adiabatic~isothermal type often arise in the mathematical
modeling of heat transfer phenomena. Under certain circumstances, the mixed condition gives rise to
singular behavior which cannot be adequately treated by numerical means alone. The numerical procedure
must be supplemented by an asymptotic analysis for the local behavior near the singularity. In the special
case of a mixed boundary condition on a straight boundary, the strength of the singularity is given in
terms of a path-independent integral, the value of which can be determined from the numerical solution
for the far-field behavior. Implications of overlooking the singular behavior due to the mixed boundary
condition are discussed.

1. INTRODUCTION

A WIDE range of problems in continuum mechanics
involve mixed boundary conditions. Solutions to
these problems can display singularities in flux quanti-
ties (e.g heat flux, electrostatic flux, strain, etc.) while
the total energy of the system remains bounded [ 1, 2].
Generally, the asymptotic solution that characterizes
the singular behavior dominates the complete solution
in a small region of relevant dimensions in the
neighborhood of the singular point. In fact, stress and
strain singularities at the tip of a sharp crack form
the foundation of fracture mechanics [3,4]. The study
of singularities has received less attention in heat
transfer, although they naturally arise in many prob-
lems [5-11]. Through an example, it is shown that
a reliable estimate of the total energy transferred in
the neighborhood of a singularity, which is often the
major portion of the energy of the system, requires
that the singularity be carefully treated.

In this paper, steady-state temperature fields are
considered in a wedge-shaped region0 < 6 < a,r >0
where, at the vertex of the wedge, the boundary
condition changes abruptly from isothermal to adia-
batic. Therefore, the vertex is a point of flux singular-
ity. Whenever the included angle « is greater than 7/2
the heat flux is unbounded at the vertex. We begin
with a local eigenvalue analysis that determines the
asymptotic temperature field in the neighborhood of
the vertex to within a multiplicative (amplitude) factor,
Ay. For some simple geometries, A, can be found
from closed form solutions based on, e.g. dual series,
singular integral equations, or conformal mapping
[1,2]. Otherwise, however, 4, must be determined
numerically.

Due to the presence of the flux singularity, it is
generally difficult to determine A4, accurately from
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numerical calculations alone since a finite discretiz-
ation around the singularity cannot reproduce the
steep gradients there. Therefore, prior knowledge of
the form of the asymptotic solution is very useful, if
not essential, in numerically determining A,. This is
demonstrated by finite difference solutions for the
steady-state temperature field in a plate with an
adiabatic—isothermal mixed-boundary condition
along one edge. It is shown that when the mixed-
boundary condition arises along a straight boundary,
the amplitude factor A, can be readily determined
from the temperature field far from the singularity in
terms of a path-independent integral (that is analog-
ous to the J-integral of fracture mechanics [12]). In
regions remote from the singularity the numerical
solutions tend to be relatively accurate, and therefore,
by evaluating this integral along a path far from the
singularity an accurate estimate of A, is obtained.

2. LOCAL ANALYSIS

2.1. Asymptotic solution

Consider the solid, wedge-shaped region 0 < 0 < «
with vertex angle «, in which the steady-state temper-
ature field is governed by Laplace’s equation. Due to
a discontinuous change in the boundary condition at
the vertex, r = 0, from the first kind on 6 = 0 to the
second kind on 0 = q, there is a flux singularity [1,2]
and the temperature field near r = 0 depends on
remote boundary conditions only through a multiplic-
ative constant. In this sense, therefore, the local
problem is autonomous and can be investigated
independent of the overall geometry surrounding the
vertex.
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NOMENCLATURE
A, coefficients in equation (2a) Qs heat transfer in 8-direction
A, strength of flux singularity r radial coordinate
C integration path, equation (7) T temperature
J value of path-independent integral, equation X horizontal coordinate
7 x* matching coordinate used in two-term
k thermal conductivity approximation
M number of grid spacings in inner grid Xo half-width of rectangular path
n index in equation (2a) y vertical coordinate
N number of grid spacings in outer grid Yo height of rectangular path.
q magnitude of heat flux, equation (6)
qo far-field estimate of heat flux Greek symbols
q, radial component of heat flux o wedge angle, Fig. 1
qs  component of heat flux in f-direction 0 angular coordinate
Q. heat transfer across lower surface of plate Ay eigenvalue, equation (2b).
Qu heat transfer across upper surface of plate

In the neighborhood of the vertex, with isothermal
conditions along # =0 and adiabatic conditions¥}
along 0 = a, the steady-state temperature distribution
T(r, 0) satisfies

1T

10( 0T
;5<rw>+ﬁw—0 (la)
T(r,0) = 0, Z—g(r, 0=0.  (Ib)

The separable solution to equation (1a) that satisfies
equations (1b) and (1c) and has a bounded tempera-
ture at r =0 is

_(2n+ m
T 2a
(2a,b)

T(r,0) = goA"r‘"sinA,,(), A,

The coefficients A4, are determined, in general, from
far-field boundary conditions and not from the local
analysis. If the flux singularity occurs at a point on
the boundary which has finite curvature the present
analysis applies with « = = since locally (r — 0) the
radius of curvature of the boundary will be large
compared with r.

Near the vertex, the asymptotic behaviors of tem-
perature and heat flux follow from equation (2): as
r—-0

T(r,0) = Aor™**sin <£ 0) 3)

tIn the case of a constant, non-zero flux on 8 = o, ie.
(0T/00)r, o) = f, equation (1) is recovered through the simple
substitution T(r,8) = T(r,0) — 6.

_ QT__ _ lﬂ mi2a—1 o T
q(r,0)= — k 5 = A0<2a>r sin 20(6 4)
- AO(%) pra - 1cos( 0)

q= |V TI = (q'2 + qg)l/z = AO(%)"“/ZI -1 (6)

—koT
qolr,0) = — 5 =

SN

)

where k is the thermal conductivity. Equations (4)
and (5) show that for wedge angles o« > n/2 the fluxes
g, and g, both exhibit a singularity at the vertex of
order r2*~ ! A plot of the order of the singularity,
n/2a — 1, vs the wedge angle « is given in Fig. 1. For
o > /2, even though the flux is unbounded at r = 0,
the total energy flow into or out of the region around
r = 0 is bounded.

The far-field (remote) geometry and boundary con-
ditions enter into the asymptotic behavior only
through the single multiplicative factor A,, which is
the strength of the flux singularity that appears in
equations (3)—(6). By matching equation (2) to the far-
field solution for a particular problem, 4, can be
determined. In general, for complex geometries and
far-field boundary conditions, A, must be determined
from numerical solutions. Whether using finite differ-
ence, finite element, boundary element, or some other
numerical method, due to the flux singularity, special
care in choosing a sufficiently fine discretization
around r = 0 must be taken to accurately calculate
Ao and to interpret the numerical results [13,14].
Generally, a tedious procedure involving mesh refine-
ment is required to check convergence. Typical fea-
tures of a numerical solution of problems involving
singularities are discussed below through an example.
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F1G. 1. Order of flux singularity as a function of wedge
angle, a.

2.2. A, via the J-integral

When a = 7 the thermal problem considered here
resembles a problem in fracture mechanicst for which
Rice [12] has shown that A, is directly related to a
path-independent integral that is evaluated along any
path from 6 = 0 to n. This fact has greatly aided both
the analytical and experimental determination of A,
in the study of fracture [16]. The mixed-boundary-
value problem associated with o = m arises in a
number of contexts in heat transfer. Examples are the
surface rewetting problem in loss-of-coolant accident
studies [6], contact resistance problems [ 7], enclosure
convection [9] and heat loss from buried pipes [5].

Consider the half-space r > 0,0 < 0 < n and define

the path integral
1| (o1} [(oTY aToT
1= [l G- o i5ed o
where C is any contour which begins on y = 0, x > 0,
encircles the origin (* = 0) in a counterclockwise sense
and terminates on y =0, x < 0. The value of this
integral is independent of the path C along which it
is evaluated [12]. This can be shown by constructing
a closed path consisting of two concentric arcs
0<8<mn with r=r,, r, connected by two line
segments along the x-axis: r; <r <r, on § =0 and
n. Using Green’s theorem to evaluate the integral in
equation (7) over this closed contour leads to the
conclusion that J is independent of the path C since
the integral vanishes on the two segments along the
x-axis. Furthermore, J = 0 in the absence of a flux
singularity within the region bounded by C and y = 0.
If J is evaluated along a semi-circular path around
r = 0 with a vanishingly small radius so that equation
(3) dominates the terms in the integrand of equation
(7), it can be shown that

J=Jo=%43 ®)

+This integral is derived directly from an analogy with
linear—elastic fracture mechanics under antiplane strain
(Mode III) conditions [12]. With u,(x y) denoting the out-
of-plane displacement in an isotropic linear—elastic solid, the
analogy follows with the shear modulus G =1, u,—» T,
uZ,X = y:x = a'zx i T:x’ and ui’..y = yzy = 62)’ g ’I-:y Where y
denotes strain and o stress.
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F1G. 2. Steady heat conduction in a square plate with a flux
singularity at x = y = 0.

where use has been made of the asymptotic relations

T, = ~ 3 (Ao sin(0/2)

T,= %(AO/\/r) cos (6/2).

Given a numerical solution for T(x, y) for a partic-
ular geometry and far-field boundary conditions, an
estimate of J = J, can be obtained along a contour
C that is far away from the singularity. Even with a
relatively coarse mesh around r = 0, the numerical
solution in an annular region that is far from the
singularity where gradients are shallow is relatively
accurate, so that the integration of equation (7) along
a path in this region leads to an accurate estimate
J = J . This is demonstrated in the numerical exam-
ple presented below.

3. A NUMERICAL EXAMPLE

To illustrate the analyses discussed in the previous
section, consider a square plate of unit dimension
and unit thermal conductivity with mixed thermal
boundary conditions as shown in Fig. 2. From equa-
tion (4) with a = =, the point x =0, y = 0 is a point
of flux singularity while the flux is bounded at the
points (x, y) = (+ 1/2, 1) and the point (1/2,0) because
at these points the wedge angle « = n/2. The steady
temperature in the plate is governed by Laplace’s
equation and the conditions

T(x,0) = 0, O<x< % (9a)
T -1
6_y(xy())-—0, T<X<0 (9b)
oT{ 1
Tx,1)=1, 5( + §,y> =0. (9d)

From equations (3) and (5) the local behaviors of
temperature and heat flux near the origin, r — 0, are
T(r,0) = Agr'/?sin(6/2) (10)

qs(r, )= — 1/2A4r ~ 2 cos (6/2). (1)
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F1G. 3. Variation of local heat flux on the lower plate surface, 0T(x, 0)/dy, with distance from the singularity,
x, for various mesh sizes. Data points nearest to the singularity for each mesh size are circled.

3.1. Finite difference solutions

Numerical solutions for conditions (9) were
obtained by a finite difference technique. Central
differencing was used in conjunction with a highly
refined mesh in the vicinity of the origin. That is, a
dense mesh is used in the space between the origin
and the first outer grid lines to the left, to the right
and above the origin. In discussing mesh size, the
notation N x N(M) will be adopted where N is the
number of grid spaces in both the x- and y-directions
for the outer mesh and M is the number of grid spaces
between two adjacent outer grid lines for the inner
mesh. The solution was obtained for several different
mesh sizes: 10 x 10(0), 20 x 20(0), 40 x 40(0),
20 x 20(20), 40 x 40(10) and 40 x 40(20). The
40 x 40(20) mesh has 4740 mesh points, 861 of which
are in the region |x| < 0.025, y < 0.025.

In Fig. 3 the flux —3T(x,0)/dy for x > 0 obtained
from the finite difference solutions is plotted vs
distance from the singularity for each mesh. For each
mesh, the solution at the grid line closest to the
singularity is circled. Far from the singularity, r 2 0.3,
all five meshes are in good agreement. However, near
the singularity, r < 0.1, the uniform mesh (10 x 100}
and 40 x 40(0)) results begin to deviate significantly.
Very close to the singularity, e.g. r < 0.01, even the
relatively accurate non-uniform mesh results (Fig.
3(b)) display discrepancies that significantly affect the
predicted overall heat transfer as discussed below.

In heat transfer, global energy conservation is often
used as a check for satisfactory convergence of a
numerical solution. The heat transfer across the lower
surface of the plate, with k = 1, is

172 T
QL=J; 5(3@0}@ (12)

Table 1. Comparison of Qy; and Q; with and without use of
the asymptotic solution

Without asymptotic With asymptotic

behavior behavior
Mesh 0, @ |20 o |e-¢y

| Qu | | Qu
10 x 10(0) 0.843 0.677 0.197 0766 0.051
20 x 20(0) 0.831 0713 0.142  0.786 0.054
40 x 40(0) 0826 0.742 0,102  0.800 0.032
20 x 20(20) 0.824 0.782 0.051 0.805 0.023
40 x 40(10) 0.820 0.793 0033 0813 0009
40 x 40(20) 0820 0.799 0026 0814 0.007

and across the upper surface of the plate is

1/2
Qu= J‘ g—}{(x, I)dx. (13)

- 1/2

Comparisons of calculated values of @, and Qy are
given in Table 1 for the six meshes; two sets of results
are tabulated. In the first set, the finite difference
solutions on O<x<1/2, y=0, without the
asymptotic behavior analytically included, are inte-
grated using Simpson’s rule to obtain an estimate
for Q. For the coarse 10 x 10(0) mesh, heat transfer
across the lower boundary is 20% below the heat
transfer across the upper boundary; for the
40 x 40(20) mesh it is 3% below. Since @y and
Q. are the overall (integrated) heat transfer, a 3%
discrepancy for such a refined mesh is rather large. The
second set of results (last two columns) incorporate
contributions to @, around x = 0 that result from a
direct integration of 8T(x, 0)/8y = (1/2)4,x ™~ /2, where
Ay is determined from the J-integral as discussed
below. Clearly, piecing together the asymptotic
behavior with the finite difference results significantly
improves the numerical solution.
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Table 2. A, from gy(r,0) for
40 x 40(20) mesh

r Ay
0.00125 0.740
0.0025 0.831
0.005 0.881
0.0075 0.899
0.01 0910
0.0125 0917
0.015 0.922
0.0175 0.926
0.02 0.929
0.0225 0.930
0.025 0.929
0.05 0.989
0.075 1.026
0.1 1.062

3.2. Numerical determination of A,

The results summarized in Fig. 3 and Table 1
demonstrate that it is difficult to determine the heat
flux near r =0 and even the overall heat transfer
directly from the finite difference solutions. On the
other hand, the complete spatial solution near r =0
can be accurately described by equations (10) and (11)
with an accurate estimate of 4, On y = 0, with x < 0
adiabatic and x > 0 isothermal a large heat flux must
be maintained along x > 0. Therefore, one would
expect that numerically determined values of gg(r, 0)
near r =0 (but not too near) should provide good
data from which to estimate A,. This is not the case
as clearly seen in Table 2.

In this table, calculated values of A, = — 2ri/?
q¢(r,0) are tabulated from numerical values of g, in
the region 0 < r < 0.1 for the fine 40 x 40(20) mesh
(4740 mesh points). The fact that these estimates of
A, vary continuously with r demonstrates that the
finite difference solutions cannot accurately reproduce
the gyocr~ /2 behavior near r = 0 and, therefore, that
choosing an accurate value of A, directly from the
numerical results is rather difficult. The value of A,
calculated for this mesh using the J-integral is 0.923.
Attempts to estimate A, from point values of either
Tor q showed similar and often worse trends. Coarser
meshes displayed even greater variations. On the
other hand, for each mesh a rather accurate estimate
of A, is obtained from the J-integral.

To determine the strength of the singularity from
equation (8), the value of J was computed from the
finite difference results for six rectangular paths C
around x =0, y=0. The right and left vertical
segments of each path lie along x = x, and —x,,
respectively, while the upper horizontal segment lies
along y = y,. The calculated values of J and A4, along
the six paths for three meshes are shown in Table 3.
Note that differences in J from path to path are less
than 2% for the coarsest mesh and less than a fraction
of a percent for the non-uniform meshes. Table 4
shows the effect of mesh size on the computed values
of J and A, based on six paths. Note that the
difference in (Ag),,, between the coarsest uniform
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Table 3. J and A, for several paths and mesh sizes

10 x 10(0) 20 x 20(20) 40 x 40(20)
Xo Yo J A, J Ao J Ao
0.50 1.00 0.3180 0.8999 0.3314 09186 0.3343 0.9227
0.40 0.80 0.3174 0.8990 0.3312 0.9184 0.3343 0.9226
0.40 040 0.3151 0.8958 0.3306 0.9176 0.3342 0.9225
0.30 0.60 0.3169 0.8983 0.3311 0.9182 0.3342 0.9226
0.20 040 0.3161 0.8972 0.3310 0.9180 0.3342 0.9226
0.10 0.40 0.3128 0.8925 0.3306 0.9175 0.3343 0.9227

Table 4. J and A, averaged over all paths

Mesh Javg (Aodave
10 x 10(0) 0.315 0.896
20 x 20(0) 0.326 0911
40 x 40(0) 0.330 0917
20 x 20(20) 0.331 0918
40 x 40(10) 0.334 0.922
40 x 40(20) 0.334 0.923

mesh (10 x 10(0)) and the finest non-uniform mesh
(40 x 40(20))is less than 3%. The success in determin-
ing Ao from the J-integral is due to two important
properties of J: (i) since J is path independent it can
be evaluated on a contour C that is chosen far from
the singularity where the finite difference results are
relatively accurate and (ii) since J is an integral of
flux quantities it tends to smooth variations in the
flux. In fact, so long as the integration path remains
outside of two or three mesh spaces nearest the
singularity, the variation in J is less than 5%. For
example, the rectangular path with x, =001,
Yo = 0.02 yields A, = 0.914 for the 40 x 40(20) mesh
which differs from the value 4, = 0.923 in Table 4 by
less than 1%.

The discrete data in Fig. 3 is replotted as smooth
curves in Fig. 4 along with the asymptotic result of
equation (11) using the valug A, = 0.923 obtained
from the J-integral on a 40 x 40(20) mesh (see Table
4). From that figure, it is clear that the overlap
region for the asymptotic behavior and the numerical
solutions is relatively small even for the 40 x 40(20)
mesh where it is approximately 0.01 <r < 0.03.
Therefore, it would be rather difficult to determine
A, accurately via a direct asymptotic/numerical
matching. An even finer mesh would be required to
increase the size of the overlap region. The power and
advantage of the J-integral technique is made quite
clear in this context. The calculated values of Q;
labeled ‘with asymptotic behavior’ in Table 1 are
based upon the analytical representation (11) for
0T(x,0)/0y near x =0 with Ay = (Ag),,, for each
mesh. This asymptotic behavior is matched to the
numerical results and then the composite solution is
integrated to give Q;. With this procedure the relative
error between @, and Qy is reduced by a factor of 2
for the coarsest mesh and a factor of 4 for the finest
mesh.
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Asymptotic, Eq. (11)
with Ay=0.923
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Fi1G. 4. Comparisons of numerical and asymptotic heat flux
distribution.

The variation in ¢, with mesh refinement can be
further explained by noting, from equation (11) in
integrated form and Tables 1 and 4, that on y =0
near x =0, — Qy/Q, =~ 1.1x"2, Therefore, on y =0
the heat transfer along 0 < x < 0.01 accounts for over
10% of the total heat transfer along 0 € x < 1/2.

Finally, a simple, two-term approximation for
q,(x,0) is obtained by matching the singular solution
of equation (11) with the nearly constant value ¢,
near x = 1/2. The matching point is x* = (d,/2q,)*.
From the numerical results summarized above,
Ao = 0923 and qo= —q,(1/2,0)~ 1.16, so that
x* = 0.158. Integration of this two-term, composite
approximation from x = 0 to 1/2 gives an estimate
for @, = 0.764 which is only 6% below the best
numerical value given in Table 1 (ie. for the
40 x 40(20) mesh with the asymptotic behavior
analytically integrated).

4. CONCLUSIONS

Mixed boundary conditions of the isothermal-
adiabatic type can result in singular behavior in flux
quantities under certain circumstances {x > n/2). In
general, proper treatment of problems involving these
singularities must combine the asymptotic solution
in the nearfield, with numerical information in the
farfield. The strength of the singularity 4, can be
determined approximately through an asymptotic/
numerical matching process. In the special but not
uncommon case of a flux singularity on a smooth
boundary (« = n), the strength of the singular field,
Ag, is directly related to a path-independent integral

J. L. BAssaNi et al.

which can be computed to high precision using
numerical results generated on a rather course mesh.
Proper treatment and use of the asymptotic behavior
was shown to improve global energy conservation
substantially, perhaps making extremely fine meshes
unnecessary.
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CONDITIONS AUX LIMITES MIXTES ADIABATIQUE-ISOTHERME POUR LE
TRANSFERT DE CHALEUR

Résumé—Des conditions aux limites mixtes de type adiabatique-isotherme sont fréquentes dans la modélis-
ation mathématique des phénoménes de transfert thermique. Dans certaines circonstances, la condition
mixte donne lieu 4 un comportement singulier qui ne peut étre correctement traité par des moyens
numériques seuls. La méthode numérique peut étre complétée par une analyse asymptotique pour le
comportement local proche de la singularité. Dans le cas spécial d’une condition mixte sur une frontiére
rectiligne, l'intensité de la singularité est donnée en fonction d'une intégrale indépendante du parcours
dont la valeur peut étre déterminée a partir d’une solution numérique pour le comportement au loin. On
discute les implications de la considération du comportement singulier di 4 la condition aux limites mixtes.

ADIABAT-ISOTHERM GEMISCHTE RANDBEDINGUNGEN BEI DER
WARMEUBERTRAGUNG

Zusammenfassung—Gemischte Randbedingungen vom adiabat-isothermen Typ entstehen oft bei der
mathematischen Modellbildung von Wirmetibertragungsphdnomenen. Unter gewissen Umstiinden tritt
durch die gemischte Bedingung singuliires Verhalten auf, welches nicht hinreichend durch numerische Mittel
allein abgehandelt werden kann. Das numerische Vorgehen muf ergéinzt werden durch eine asymptotische
Analyse des Ortlichen Verhaltens nahe bei der Singularitit. In dem Spezialfall einer gemischten Rand-
bedingung an einer geraden Berandung wird die Stirke der Singularitit in Form eines wegunabhingigen
Integrals angegeben. Sein Wert kann bestimmt werden aus der numerischen Losung fiir groBe Entfernung
von der Singularitit. Folgerungen aus den Zusammenhingen zwischen singuldrem Verhalten und der
gemischten Randbedingung werden erdrtert.

CMEWAHHBIE AZJTUABATHYECKHU-H30TEPMUYECKHE TPAHUYHBIE
YCAOBHA B TENJIOOBMEHE

Annotamas—CMeWaHHBIC TPAHUYHBIE YCIOBHA aanabaTHYeCKN-U30TEPMHUYECKOTO THAA Y4CTO BO3HH-
KaloT OpH MaTeMaTHYECKOM MOIETHPOBAHMH ABJIcHHH Tersionepesoca. [Ipn onpenenennsix obcrosre-
JILCTBAX CMELLUAHHBIE YCJOBHA NPHBOAAT K CHHIYJIAPHOCTAM, KOTOPbIE HENIb3s a€KBATHO PacCMOTPETh,
HCNOJIb3ys TOJIBKO YHCIEHHbIE MeTOObL. UHCIeHHBIH pacyeT cneyeT JONOIHUTD ACHMIITOTHYECKHM aHa-
JIMIOM JIOKaJILHOR CTPYKTYpbl BOJIM3HM CHHIynspHOCTH. B 00000M Clyvae CMEIUIAHHBIX TDAaHHMHBIX
YCJIOBHA HA MPAMOH rpaHuUE MOPAAOK CHHIYJIAPHOCTH BBbIPAXAETCH Yepe3 MHTErpas, He3aBHCALME OT
NyTH UHTETPHPOBAHHS, KOTOPRIH MOXHO ONPEENHTDb 110 YHCJIEHHOMY PEILeHHIO Uit OajabHel ofnacTu.
O6cyxnaroTcs BOIMOXHBIE NOCTENCTBHSA NpeHEOPEKEHNS CHHIYIAPHOCTAMH, OGYCIIOBIEHHBIMH CMe-
LIAHHBIMH TPAaHUYHBIMM YCIIOBHSIMH.
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