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Abstract-Mixed boundary conditions of the adiabatic-isothermal type often arise in the mathematical 
modeling of heat transfer phenomena. Under certain circumstances, the mixed condition gives rise to 
singular behavior which cannot be adequately treated by numerical means alone. The numerical procedure 
must be supplemented by an asymptotic analysis for the local behavior near the singularity. In the special 
case of a mixed boundary condition on a straight boundary, the strength of the singularity is given in 
terms of a path-independent integral, the value of which can be determined from the numerical solution 
for the far-field behavior. Implications of overlooking the singular behavior due to the mixed boundary 

condition are discussed. 

1. INTRODUCTION 

A WIDE range of problems in continuum mechanics 
involve mixed boundary conditions. Solutions to 
these problems can display singularities in flux quanti- 
ties (e.g heat flux, electrostatic flux, strain, etc.) while 
the total energy of the system remains bounded [l, 23. 
Generally, the asymptotic solution that characterizes 
the singular behavior dominates the complete solution 
in a small region of relevant dimensions in the 
neighborhood of the singular point. In fact, stress and 
strain singularities at the tip of a sharp crack form 
the foundation of fracture mechanics [3,4]. The study 
of singularities has received less attention in heat 
transfer, although they naturally arise in many prob- 
lems [5-111. Through an example, it is shown that 
a reliable estimate of the total energy transferred in 
the neighborhood of a singularity, which is often the 
major portion of the energy of the system, requires 
that the singularity be carefully treated. 

In this paper, steady-state temperature fields are 
considered in a wedge-shaped region 0 < 0 < u, I > 0 
where, at the vertex of the wedge, the boundary 
condition changes abruptly from isothermal to adia- 
batic. Therefore, the vertex is a point of flux singular- 
ity. Whenever the included angle a is greater than 7[/2 
the heat flux is unbounded at the vertex. We begin 
with a local eigenvalue analysis that determines the 
asymptotic temperature field in the neighborhood of 
the vertex to within a multiplicative (amplitude) factor, 
A,. For some simple geometries, A, can be found 
from closed form solutions based on, e.g. dual series, 
singular integral equations, or conformal mapping 
[1,2]. Otherwise, however, A, must be determined 
numerically. 

Due to the presence of the flux singularity, it is 
generally difficult to determine A, accurately from 

numerical calculations alone since a finite discretiz- 
ation around the singularity cannot reproduce the 
steep gradients there. Therefore, prior knowledge of 
the form of the asymptotic solution is very useful, if 
not essential, in numerically determining A,. This is 
demonstrated by finite difference solutions for the 
steady-state temperature field in a plate with an 
adiabatic-isothermal mixed-boundary condition 
along one edge. It is shown that when the mixed- 
boundary condition arises along a straight boundary, 
the amplitude factor A, can be readily determined 
from the temperature field far from the singularity in 
terms of a path-independent integral (that is analog- 
ous to the J-integral of fracture mechanics [12]). In 
regions remote from the singularity the numerical 
solutions tend to be relatively accurate, and therefore, 
by evaluating this integral along a path far from the 
singularity an accurate estimate of A, is obtained. 

2. LOCAL ANALYSIS 

2.1. Asymptotic solution 
Consider the solid, wedge-shaped region 0 < 8 < a 

with vertex angle a, in which the steady-state temper- 
ature field is governed by Laplace’s equation. Due to 
a discontinuous change in the boundary condition at 
the vertex, I = 0, from the first kind on 0 = 0 to the 
second kind on f3 = a, there is a flux singularity [ 1,2] 
and the temperature field near I = 0 depends on 
remote boundary conditions only through a multiplic- 
ative constant. In this sense, therefore, the local 
problem is autonomous and can be investigated 
independent of the overall geometry surrounding the 
vertex. 
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NOMENCLATURE 

A” coefficients in equation (2a) QB heat transfer in &direction 

A0 strength of flux singularity I radial coordinate 
C integration path, equation (7) T temperature 
J value of path-independent integral, equation X horizontal coordinate 

(7) X’ matching coordinate used in two-term 
k thermal conductivity approximation 
M number of grid spacings in inner grid x0 half-width of rectangular path 

: 
index in equation (2a) Y vertical coordinate 
number of grid spacings in outer grid Yo height of rectangular path. 

4 magnitude of heat flux, equation (6) 

40 far-field estimate of heat flux Greek symbols 

4, radial component of heat flux 
; 

wedge angle, Fig. 1 

4e component of heat flux in e-direction angular coordinate 
heat transfer across lower surface of plate 1” eigenvalue, equation (2b). 
heat transfer across upper surface of plate 

In the neighborhood of the vertex, with isothermal 
conditions along 0 = 0 and adiabatic conditionst 
along 0 = a, the steady-state temperature distribution 
T(r, 0) satisfies 

(14 

q,(r,@) = - kg= - Ao(~)r”” sin(zQ)(4) 

qkr,ej = -$g= - ,40(!$r@- lcos(Ee) 

(5) 

T(r,O) = 0, (lb,4 q = IV TI = (q; + q;)l’* = A, 
0 

2 r+ - 1 (6) 

The separable solution to equation (la) that satisfies 
equations (lb) and (lc) and has a bounded tempera- 
ture at r = 0 is 

T(r, 0) = n zoAn rln sin 1,8, 1 = (2n + 1)x n 
2a 

@a, W 

The coefficients A, are determined, in general, from 
far-field boundary conditions and not from the local 
analysis. If the flux singularity occurs at a point on 
the boundary which has finite curvature the present 
analysis applies with a = n since locally (r + 0) the 
radius of curvature of the boundary will be large 
compared with r. 

Near the vertex, the asymptotic behaviors of tem- 
perature and heat flux follow from equation (2): as 
r-+0 

T(r, 0) = Aormiza sin 

tin the case of a constant, non-zero flux on 0 = a, i.e. 
(aT/a@(r, 0~) = 1; equation (1) is recovered through the simple 
substitution T(r, 0) = T(r, 0) - /Q. 

where k is the thermal conductivity. Equations (4) 
and (5) show that for wedge angles CL > a/2 the fluxes 
q, and qe both exhibit a singularity at the vertex of 
order r”/” - ‘. A plot of the order of the singularity, 
n/2a - 1, vs the wedge angle tl is given in Fig. 1. For 
u > n/2, even though the flux is unbounded at r = 0, 
the total energy flow into or out of the region around 
r = 0 is bounded. 

The far-field (remote) geometry and boundary con- 
ditions enter into the asymptotic behavior only 
through the single multiplicative factor A,, which is 
the strength of the flux singularity that appears in 
equations (3)-(6). By matching equation (2) to the far- 
field solution for a particular problem, A, can be 
determined. In general, for complex geometries and 
far-field boundary conditions, A, must be determined 
from numerical solutions. Whether using finite differ- 
ence, finite element, boundary element, or some other 
numerical method, due to the flux singularity, special 
care in choosing a sufficiently fine discretization 
around r = 0 must be taken to accurately calculate 
A0 and to interpret the numerical results [13,14]. 
Generally, a tedious procedure involving mesh refine- 
ment is required to check convergence. Typical fea- 
tures of a numerical solution of problems involving 
singularities are discussed below through an example. 
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FIG. 1. Order of flux singularity as a function of wedge 
angle, a. 

FIG. 2. Steady heat conduction in a square plate with a flux 
singularity at x = y = 0. 

2.2. A0 via the J-integral where use has been made of the asymptotic relations 
When c( = rr the thermal problem considered here 

resembles a problem in fracture mechanics? for which 
Rice [12] has shown that A, is directly related to a 
path-independent integral that is evaluated along any 
path from 0 = 0 to n. This fact has greatly aided both 

T, = - f(A,/dr)sin(6/2) 

T, = ;(A,/&)cos(0/2). 

the analytical and experimental determination of A,, 
in the study of fracture [16]. The mixed-boundary- 
value problem associated with LY = rr arises in a 
number of contexts in heat transfer. Examples are the 
surface rewetting problem in loss-of-coolant accident 
studies [6], contact resistance problems [7], enclosure 
convection [9] and heat loss from buried pipes [S]. 

Consider the half-space r > 0,O < 0 < 7c and define 
the path integral 

J = jc{;[(gJ-(gJ]dy + g$x} (7) 

where C is any contour which begins on y = 0, x > 0, 
encircles the origin (r = 0) in a counterclockwise sense 
and terminates on y = 0, x < 0. The value of this 
integral is independent of the path C along which it 
is evaluated [ 123. This can be shown by constructing 
a closed path consisting of two concentric arcs 
0 < 0 < rr with r = r,, rz connected by two line 
segments along the x-axis: rI < r < r2 on 0 = 0 and 
K. Using Green’s theorem to evaluate the integral in 
equation (7) over this closed contour leads to the 
conclusion that J is independent of the path C since 
the integral vanishes on the two segments along the 
x-axis. Furthermore, J = 0 in the absence of a flux 
singularity within the region bounded by C and y = 0. 

If J is evaluated along a semi-circular path around 
r = 0 with a vanishingly small radius so that equation 
(3) dominates the terms in the integrand of equation 
(7), it can be shown that 

Given a numerical solution for T(x, y) for a partic- 
ular geometry and far-field boundary conditions, an 
estimate of J = J, can be obtained along a contour 
C that is far away from the singularity. Even with a 
relatively coarse mesh around r = 0, the numerical 
solution in an annular region that is far from the 
singularity where gradients are shallow is relatively 
accurate, so that the integration of equation (7) along 
a path in this region leads to an accurate estimate 
J = J,. This is demonstrated in the numerical exam- 
ple presented below. 

3. A NUMERICAL EXAMPLE 

To illustrate the analyses discussed in the previous 
section, consider a square plate of unit dimension 
and unit thermal conductivity with mixed thermal 
boundary conditions as shown in Fig. 2. From equa- 
tion (4) with a = 7c, the point x = 0, y = 0 is a point 
of flux singularity while the flux is bounded at the 
points (x, y) = ( &- l/2,1) and the point (l/2,0) because 
at these points the wedge angle a = n/2. The steady 
temperature in the plate is governed by Laplace’s 
equation and the conditions 

T(x,O) = 0, o<x<; (9a) 

g(x,o)=o. +<x<o (9W 

T(x, 1) = 1, (9s d) 

tThis integral is derived directly from an analogy with From equations (3) and (5) the local behaviors of 
linear-elastic fracture mechanics under antiplane strain temperature and heat flux near the origin, r _, 0, are 
(Mode III) conditions [12]. With u.(xy) denoting the out- 
of-plane displacement in an isotropic linear-elastic solid, the 
analogy follows with the shear modulus G = 1, U, + 7; 

T(r, 0) = A,$” sin (e/2) (10) 

U&X = Y.X = 6,X + TX, and u,.~ = yzy = Q_ + T, where y 
denotes strain and 0 stress. 4s (r, 0) = - 1/2A,r - ‘I2 cos (e/2). (11) 
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DISTANCE FROM SINGULARITY DISTANCE FROM SINGULARITY 

FIG. 3. Variation of local heat flux on the lower plate surface, dT(x,O)/dy, with distance from the singularity, 
x, for various mesh sizes. Data points nearest to the singularity for each mesh size are circled. 

3.1. Finite difference solutions 
Numerical solutions for conditions (9) were 

obtained by a finite difference technique. Central 
differencing was used in conjunction with a highly 
refined mesh in the vicinity of the origin. That is, a 
dense mesh is used in the space between the origin 
and the first outer grid lines to the left, to the right 
and above the origin. In discussing mesh size, the 
notation N x N(M) wiil be adopted where N is the 
number of grid spaces in both the x- and y-directions 
for the outer mesh and M is the number of grid spaces 
between two adjacent outer grid lines for the inner 
mesh. The solution was obtained for several different 
mesh sizes: 10 x 10(O), 20 x 20(O), 40 x 40(O), 
20 x 20(20), 40 x 40(10) and 40 x 40(20). The 
40 x 40(20) mesh has 4740 mesh points, 861 of which 
are in the region 1x1 < 0.025, y < 0.025. 

In Fig. 3 the flux -aT(x,O)/ay for x > 0 obtained 
from the finite difference solutions is plotted vs 
distance from the singularity for each mesh. For each 
mesh, the solution at the grid line closest to the 
singularity is circled. Far from the singularity, r 2 0.3, 
all five meshes are in good agreement. However, near 
the singularity, r 5 0.1, the uniform mesh (10 x 10(O) 
and 40 x 40(O)) results begin to deviate significantly. 
Very close to the singularity, e.g. r 6 0.01, even the 
relatively accurate non-uniform mesh results (Fig. 
3(b)) display discrepancies that significantly affect the 
predicted overall heat transfer as discussed below. 

In heat transfer, global energy conservation is often 
used as a check for satisfactory convergence of a 
numerical solution. The heat transfer across the lower 
surface of the plate, with k = 1, is 

QL = (12) 

Table I. Comparison of Qu and QL with and without use of 
the asymptotic solution 

Without asymptotic With asymptotic 
behavior behavior 

10 x 10(O) 0.843 0.677 0.197 0.766 0.091 
20 x 20(O) 0.831 0.713 0.142 0.786 0.054 
40 x 40(O) 0.826 0.742 0.102 0.800 0.032 
20 x 20(20) 0.824 0.782 0.051 0.805 0.023 
40 x 40(10) 0.820 0.793 0.033 0.813 0.009 
40 x 40(20) 0.820 0.799 0.026 0.814 0.007 

and across the upper surface of the plate is 

(13) 

Comparisons of calculated values of QL and Q, are 
given in Table 1 for the six meshes; two sets of results 
are tabulated. In the first set, the finite difference 
solutions on 0 < x < l/2, y = 0, without the 
as~ptoti~ behavior analytically included, are inte- 
grated using Simpson’s rule to obtain an estimate 
for Q,_. For the coarse 10 x 10(O) mesh, heat transfer 
across the lower boundary is 20% below the heat 
transfer across the upper boundary; for the 
40 x 40(20) mesh it is 3% below. Since Q, and 
Q,_ are the overall (integrated) heat transfer, a 3% 
discrepancy for such a refined mesh is rather large. The 
second set of results (last two columns) incorporate 
contributions to QL around x = 0 that result from a 
direct integration of d7’(x, O)/ay = (1/2)&,x- ‘12, where 
A, is determined from the J-integral as discussed 
below. Clearly, piecing together the asymptotic 
behavior with the finite difference results significantly 
improves the numerical solution. 
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Table 2. A,, from q&,0) for 
40 x 40(20) mesh 

r Ao 

0.00125 0.740 
0.0025 0.831 
0.005 0.881 
0.0075 0.899 
0.01 0.910 
0.0125 0.917 
0.015 0.922 
0.0175 0.926 
0.02 0.929 
0.0225 0.930 
0.025 0.929 
0.05 0.989 
0.075 1.026 
0.1 1.062 

3.2. Numerical determination of A0 
The results summarized in Fig. 3 and Table 1 

demonstrate that it is difficult to determine the heat 
flux near r = 0 and even the overall heat transfer 
directly from the finite difference solutions. On the 
other hand, the complete spatial solution near r = 0 
can be accurately described by equations (10) and (11) 
with an accurate estimate of AO. On y = 0, with x < 0 
adiabatic and x > 0 isothermal a large heat flux must 
be maintained along x > 0. Therefore, one would 
expect that numerically determined values of q&,0) 
near r = 0 (but not too near) should provide good 
data from which to estimate A,. This is not the case 
as clearly seen in Table 2. 

In this table, calculated values of A,, = - 2r’/2 
q&,0) are tabulated from numerical values of qe in 
the region 0 < r < 0.1 for the fine 40 x 40(20) mesh 
(4740 mesh points). The fact that these estimates of 
A, vary continuously with r demonstrates that the 
finite difference solutions cannot accurately reproduce 
the qeccr - 1/2 behavior near r = 0 and, therefore, that 
choosing an accurate value of A,, directly from the 
numerical results is rather difficult. The value of A, 
calculated for this mesh using the J-integral is 0.923. 
Attempts to estimate A,, from point values of either 
Tor q showed similar and often worse trends. Coarser 
meshes displayed even greater variations. On the 
other hand, for each mesh a rather accurate estimate 
of A, is obtained from the J-integral. 

To determine the strength of the singularity from 
equation (8), the value of .I was computed from the 
finite difference results for six rectangular paths C 
around x = 0, y = 0. The right and left vertical 
segments of each path lie along x = x,, and -x0, 
respectively, while the upper horizontal segment lies 
along y = y,. The calculated values of J and A,, along 
the six paths for three meshes are shown in Table 3. 
Note that differences in J from path to path are less 
than 2% for the coarsest mesh and less than a fraction 
of a percent for the non-uniform meshes. Table 4 
shows the effect of mesh size on the computed values 
of J and A, based on six paths. Note that the 
difference in (A,),,, between the coarsest uniform 

Table 3. J and A, for several Daths and mesh sizes 

10 x 10(O) 20 x 20(20) 40 x 40(20) 
xo YO J Ao J Ao J A, 

0.50 1.00 0.3180 0.8999 0.3314 0.9186 0.3343 0.9227 

0.40 0.80 0.3174 0.8990 0.3312 0.9184 0.3343 0.9226 

0.40 0.40 0.3151 0.8958 0.3306 0.9176 0.3342 0.9225 

0.30 0.60 0.3149 0.8983 0.3311 0.9182 0.3342 0.9226 

0.20 0.40 0.3161 0.8972 0.3310 0.9180 0.3342 0.9226 

0.10 0.40 0.3128 0.8925 0.3306 0.9175 0.3343 0.9227 

Table 4. J and A, averaged over all paths 

Mesh J SW (A,),,, 

10 x 10(O) 0.315 0.896 

20 x 20(O) 0.326 0.911 

40 x 40(O) 0.330 0.917 

20 x 20(20) 0.331 0.918 

40 x 40(10) 0.334 0.922 

40 x 40(20) 0.334 0.923 

mesh (10 x 10(O)) and the finest non-uniform mesh 
(40 x 40(20)) is less than 3%. The success in determin- 
ing A, from the J-integral is due to two important 
properties of J: (i) since J is path independent it can 
be evaluated on a contour C that is chosen far from 
the singularity where the finite difference results are 
relatively accurate and (ii) since J is an integral of 
flux quantities it tends to smooth variations in the 
flux. In fact, so long as the integration path remains 
outside of two or three mesh spaces nearest the 
singularity, the variation in J is less than 5%. For 
example, the rectangular path with x,, = 0.01, 
y, = 0.02 yields A,, = 0.914 for the 40 x 40(20) mesh 
which differs from the value A0 = 0.923 in Table 4 by 
less than 1%. 

The discrete data in Fig. 3 is replotted as smooth 
curves in Fig. 4 along with the asymptotic result of 
equation (11) using the value A,, = 0.923 obtained 
from the J-integral on a 40 x 40(20) mesh (see Table 
4). From that figure, it is clear that the overlap 
region for the asymptotic behavior and the numerical 
solutions is relatively small even for the 40 x 40(20) 
mesh where it is approximately 0.01 5 r 6 0.03. 
Therefore, it would be rather difficult to determine 
A,, accurately via a direct asymptotic/numerical 
matching. An even finer mesh would be required to 
increase the size of the overlap region. The power and 
advantage of the J-integral technique is made quite 
clear in this context. The calculated values of QL 
labeled ‘with asymptotic behavior’ in Table 1 are 
based upon the analytical representation (11) for 
dT(x,O)/dy near x = 0 with A0 = (A,),,, for each 
mesh. This asymptotic behavior is matched to the 
numerical results and then the composite solution is 
integrated to give Qr. With this procedure the relative 
error between QL and Qu is reduced by a factor of 2 
for the coarsest mesh and a factor of 4 for the finest 
mesh. 
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Asymptotic, Eq. (II) 
with A,=O.923 
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DISTANCE FROM SINGULARITY 

FIG. 4. Comparisons of numerical and asymptotic heat flux 
distribution. 

The variation in QL with mesh refinement can be 
further explained by noting, from equation (11) in 
integrated form and Tables 1 and 4, that on y = 0 
near x = 0, - Qe/QL N 1.1~“~. Therefore, on y = 0 
the heat transfer along 0 < x < 0.01 accounts for over 
10% of the total heat transfer along 0 < x < l/2. 

Finally, a simple, two-term approximation for 
~&,0) is obtained by matching the singular solution 
of equation (11) with the nearly constant value qo 

near x = l/2. The matching point is x* = (A0/240)2. 
From the numerical results summa~z~ above, 
A, = 0.923 and qo = - q,,( l/2,0) 1: 1.16, so that 
x* = 0.158. Integration of this two-term, composite 
approximation from x = 0 to l/2 gives an estimate 
for QL = 0.764 which is only 6% below the best 
numerical value given in Table 1 (i.e. for the 
40 x 40(20) mesh with the asymptotic behavior 
analytically integrated). 

4. CONCLUSIONS 

Mixed boundary conditions of the isothermal- 
adiabatic type can result in singular behavior in flux 
quantities under certain circumstances (a > n/Z). In 
general, proper treatment of problems involving these 
singularities must combine the asymptotic solution 
in the nearfield, with numerical information in the 
farfield. The strength of the singularity A, can be. 
determined approximately through an asymptotic/ 
numerical matching process. In the special but not 
uncommon case of a flux singularity on a smooth 
boundary (a = n), the strength of the singular field, 
A,, is directly related to a path-independent integral 

which can be computed to high precision using 
numerical results generated on a rather course mesh. 
Proper treatment and use of the asymptotic behavior 

was shown to improve global energy conservation 
substantially, perhaps making extremely fine meshes 
unnecessary. 
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CONDITIONS AUX LIMITES MIXTES ADIABATIQUE-ISOTHERME POUR LE 
TRANSFERT DE CHALEUR 

R&nn~Des conditions aux limites mixtes de type adiabatique-isotherme sont frbquentes dans la modelis- 
ation mathematique des phenomtnes de transfert thermique. Dans certaines circonstances, la condition 
mixte donne lieu a un comportement singulier qui ne peut &tre correctement trait& par des moyens 
numtriques se&. La mtthode numerique peut &tre completee par une analyse asymptotique pour le 
comportement local proche de la singularite. Dans le cas special d’une condition mixte sur une front&e 
rectiligne, l'intensite de la singularite est don&e en fonction dune integrale indtpendante du parcours 

dont la valeur peut itre determinie B partir dune solution numerique pour le comportement au loin. On 
discutelesimplicationsdelaconsideration ducomportementsingulierd~dlaconditionauxlimitesmixtes. 

ADIABAT-ISOTHERM GEMISCHTE ~NDBEDINGUNGEN BE1 DER 
W~RME~BERT~GUNG 

Zasammenfassung--Gemischte Randbedingungen vom adiabat-isothermen Typ entstehen oft bei der 
mathematischen Modellbildung von WIrmeiibertragungsphHnomenen. Unter gewissen Urns&den tritt 
durch die gemischte Bedingung singulares Verhalten auf, welches nicht hinreichend durch numerische Mittel 
allein abgehandelt werden kann. Das numerische Vorgehen mul3 ergiinzt werden durch eine asymptotische 
Analyse des iirtlichen Verhaltens nahe bei der Singularitlt. In dem Spezialfall einer gemischten Rand- 
bedingung an einer geraden Berandung wird die Stiirke der Singularitat in Form eines wegunabhlngigen 
Integrals angegeben. Sein Wert kann bestimmt werden aus der numerischen Liisung fur grol3e Entfemung 
von der Singularitat. Folgerungen aus den Zusammenhlngen zwischen singularem Verhalten und der 

gemischten Randbedingung werden eriirtert. 

CME~AHHbIE A~~A~AT~~ECK~-~3OTEPM~~ECK~E rPAHHqHbIE 
YCJIOBHR B TEH~~6MEHE 

.klHOTannn-CMemaHHbIe rpaHWIHbIe yCJIOBIIa a~Ha6aTHqecKn-~3oTepMHqecKoro THna 'laCT0 B03HH- 

KaIOT IIpH MaTeMaTWIeCKOM MOneJIIIjJOBaHKII 5IBJIeHAi-I TennOne~HOCa. i-ipW OnpeneJIeHHbIX o6croxre- 

JIbCTBaX CMemaHHble yC,IOaIIa npIIBOnXT K CIIHryJIapHOCTaM,KOTOpbIe HeJIb aneKBaTH0 paCCMOT&IeTb, 

HCnOJIb3yaT0,IbKO WICJIeHHbIeMeTOnbl. ~INCneHHbIiipaC~eTCnenyeTAOnOnHsTbaCeMnTOTa~cCKHMaHa- 

JIA30M JIOKaJIbHOii CTpyKTypbI B6JIA3A CUHryJIapHOCTH. B 0~060~ CJIy'Iae CMemaHHbIX rpaHW'IHbIX 

ycnosel Ha npaMoii rpawue nopsnoK ceHrynnpHocTw ebrpaxcaercn repe3 mITerpan, HesasucnmsP OT 

nyTB IIHTerpkIpOBaHWI,KOTOpbIti MOWHO 0npenenHTb no wICneHHoMy pemeemonnxnanbHeir o6nacw. 

06cy)KnaIoTcn B03MOEHbIe nOCJIeaCTBIIa npeHe6pe)KeHmI CHHryJIapHOCTsMII, 06yCnOBJIeHHbIMII CMe- 

IIIaHHbIMNrpaHWIHbIMNyC,IOBIIRMkI. 


